Spiking Neural Networks (SNNs) can offer ultra low power/ energy consumption for machine learning-based applications due to their sparse spike-based operations. Currently, most of the SNN architectures need a significantly larger model size to achieve higher accuracy, which is not suitable for resource-constrained embedded applications. Therefore, developing SNNs that can achieve high accuracy with acceptable memory footprint is highly needed. Toward this, we propose a novel methodology that improves the accuracy of SNNs through kernel size scaling. Its key steps include investigating the impact of different kernel sizes on the accuracy, devising new sets of kernel sizes, generating SNN architectures based on the selected kernel sizes, and analyzing the accuracy-memory trade-offs for SNN model selection. The experimental results show that our methodology achieves higher accuracy than state-of-the-art (93.24% accuracy for CIFAR10 and 70.84% accuracy for CIFAR100) with less than 10M parameters and up to 3.45x speed-up of searching time, thereby making it suitable for embedded applications.