The field of natural language processing (NLP) has grown over the last few years: conferences have become larger, we have published an incredible amount of papers, and state-of-the-art research has been implemented in a large variety of customer-facing products. However, this paper argues that we have been less successful than we should have been and reflects on where and how the field fails to tap its full potential. Specifically, we demonstrate that, in recent years, subpar time allocation has been a major obstacle for NLP research. We outline multiple concrete problems together with their negative consequences and, importantly, suggest remedies to improve the status quo. We hope that this paper will be a starting point for discussions around which common practices are -- or are not -- beneficial for NLP research.