In this article, we present a long-duration autonomy approach for the control of connected and automated vehicles (CAVs) operating in a transportation network. In particular, we focus on the performance of CAVs at traffic bottlenecks, including roundabouts, merging roadways, and intersections. We take a principled approach based on optimal control, and derive a reactive controller with guarantees on safety, performance, and energy efficiency. We guarantee safety through high order control barrier functions (HOCBFs), which we ``lift'' to first order CBFs using time-optimal motion primitives. We demonstrate the performance of our approach in simulation and compare it to an optimal control-based approach.