Query-focused summarization (QFS) aims to provide a summary of a document that satisfies information need of a given query and is useful in various IR applications, such as abstractive snippet generation. Current QFS approaches typically involve injecting additional information, e.g. query-answer relevance or fine-grained token-level interaction between a query and document, into a finetuned large language model. However, these approaches often require extra parameters \& training, and generalize poorly to new dataset distributions. To mitigate this, we propose leveraging a recently developed constrained generation model Neurological Decoding (NLD) as an alternative to current QFS regimes which rely on additional sub-architectures and training. We first construct lexical constraints by identifying important tokens from the document using a lightweight gradient attribution model, then subsequently force the generated summary to satisfy these constraints by directly manipulating the final vocabulary likelihood. This lightweight approach requires no additional parameters or finetuning as it utilizes both an off-the-shelf neural retrieval model to construct the constraints and a standard generative language model to produce the QFS. We demonstrate the efficacy of this approach on two public QFS collections achieving near parity with the state-of-the-art model with substantially reduced complexity.