Humans and animals exhibit a range of interesting behaviors in dynamic environments, and it is unclear how our brains actively reformat this dense sensory information to enable these behaviors. Experimental neuroscience is undergoing a revolution in its ability to record and manipulate hundreds to thousands of neurons while an animal is performing a complex behavior. As these paradigms enable unprecedented access to the brain, a natural question that arises is how to distill these data into interpretable insights about how neural circuits give rise to intelligent behaviors. The classical approach in systems neuroscience has been to ascribe well-defined operations to individual neurons and provide a description of how these operations combine to produce a circuit-level theory of neural computations. While this approach has had some success for small-scale recordings with simple stimuli, designed to probe a particular circuit computation, often times these ultimately lead to disparate descriptions of the same system across stimuli. Perhaps more strikingly, many response profiles of neurons are difficult to succinctly describe in words, suggesting that new approaches are needed in light of these experimental observations. In this thesis, we offer a different definition of interpretability that we show has promise in yielding unified structural and functional models of neural circuits, and describes the evolutionary constraints that give rise to the response properties of the neural population, including those that have previously been difficult to describe individually. We demonstrate the utility of this framework across multiple brain areas and species to study the roles of recurrent processing in the primate ventral visual pathway; mouse visual processing; heterogeneity in rodent medial entorhinal cortex; and facilitating biological learning.