Energy based control methods are at the core of modern robotic control algorithms. In this paper we present a general approach to virtual model/mechanism control, which is a powerful design tool to create energy based controllers. We present two novel virtual-mechanisms designed for robotic minimally invasive surgery, which control the position of a surgical instrument while passing through an incision. To these virtual mechanisms we apply the parameter tuning method of Larby and Forni 2022, which optimizes for local performance while ensuring global stability.