Crowdsourcing has become widely used in supervised scenarios where training sets are scarce and hard to obtain. Most crowdsourcing models in literature assume labelers can provide answers for full questions. In classification contexts, full questions mean that a labeler is asked to discern among all the possible classes. Unfortunately, that discernment is not always easy in realistic scenarios. Labelers may not be experts in differentiating all the classes. In this work, we provide a full probabilistic model for a shorter type of queries. Our shorter queries just required a 'yes' or 'no' response. Our model estimates a joint posterior distribution of matrices related to the labelers confusions and the posterior probability of the class of every object. We develop an approximate inference approach using Monte Carlo Sampling and Black Box Variational Inference, where we provide the derivation of the necessary gradients. We build two realistic crowdsourcing scenarios to test our model. The first scenario queries for irregular astronomical time-series. The second scenario relies on animal's image classification. Results show that we can achieve comparable results with full query crowdsourcing. Furthermore, we show that modeling the labelers failures plays an important role in estimating the true classes. Finally, we provide the community with two real datasets obtained from our crowdsourcing experiments. All our code is publicly available (Available at: revealed as soon as the paper gets published.)