In the context of the introduction of intermittent renewable energies, we propose to optimize the main variables of the control rods of a nuclear power plant to improve its capability to load-follow. The design problem is a black-box combinatorial optimization problem with expensive evaluation based on a multi-physics simulator. Therefore, we use a parallel asynchronous master-worker Evolutionary Algorithm scaling up to thousand computing units. One main issue is the tuning of the algorithm parameters. A fitness landscape analysis is conducted on this expensive real-world problem to show that it would be possible to tune the mutation parameters according to the low-cost estimation of the fitness landscape features.