We provide a deterministic space-efficient algorithm for estimating ridge regression. For $n$ data points with $d$ features and a large enough regularization parameter, we provide a solution within $\varepsilon$ L$_2$ error using only $O(d/\varepsilon)$ space. This is the first $o(d^2)$ space algorithm for this classic problem. The algorithm sketches the covariance matrix by variants of Frequent Directions, which implies it can operate in insertion-only streams and a variety of distributed data settings. In comparisons to randomized sketching algorithms on synthetic and real-world datasets, our algorithm has less empirical error using less space and similar time.