Robotic surface consisting of many actuators can change shape to perform tasks, such as facilitating human-machine interactions and transporting objects. Increasing the number of actuators can enhance the robot's capacity, but controlling them requires communication bandwidth to increase equally in order to avoid time delays. We propose a novel control method that has constant time delays no matter how many actuators are in the robot. Having a distributed nature, the method first approximates target shapes, then broadcasts the approximation coefficients to the actuators, and relies on themselves to compute the inputs. We build a robotic pin array and measure the time delay as a function of the number of actuators to confirm the system size-independent scaling behavior. The shape-changing ability is achieved based on function approximation algorithms, i.e. discrete cosine transform or matching pursuit. We perform experiments to approximate target shapes and make quantitative comparison with those obtained from standard sequential control method. A good agreement between the experiments and theoretical predictions is achieved, and our method is more efficient in the sense that it requires less control messages to generate shapes with the same accuracy. Our method is also capable of dynamic tasks such as object manipulation.