Parallel kinematic manipulators (PKM) are characterized by closed kinematic loops, due to the parallel arrangement of limbs but also due to the existence of kinematic loops within the limbs. Moreover, many PKM are built with limbs constructed by serially combining kinematic loops. Such limbs are called hybrid, which form a particular class of complex limbs. Design and model-based control requires accurate dynamic PKM models desirably without model simplifications. Dynamics modeling then necessitates kinematic relations of all members of the PKM, in contrast to the standard kinematics modeling of PKM, where only the forward and inverse kinematics solution for the manipulator (relating input and output motions) are computed. This becomes more involved for PKM with hybrid limbs. In this paper a modular modeling approach is employed, where limbs are treated separately, and the individual dynamic equations of motions (EOM) are subsequently assembled to the overall model. Key to the kinematic modeling is the constraint resolution for the individual loops within the limbs. This local constraint resolution is a special case of the general \emph{constraint embedding} technique. The proposed method finally allows for a systematic modeling of general PKM. The method is demonstrated for the IRSBot-2, where each limb comprises two independent loops.