Prediction models inform important clinical decisions, aiding in diagnosis, prognosis, and treatment planning. The predictive performance of these models is typically assessed through discrimination and calibration. However, changes in the distribution of the data impact model performance. In health-care, a typical change is a shift in case-mix: for example, for cardiovascular risk managment, a general practitioner sees a different mix of patients than a specialist in a tertiary hospital. This work introduces a novel framework that differentiates the effects of case-mix shifts on discrimination and calibration based on the causal direction of the prediction task. When prediction is in the causal direction (often the case for prognosis preditions), calibration remains stable under case-mix shifts, while discrimination does not. Conversely, when predicting in the anti-causal direction (often with diagnosis predictions), discrimination remains stable, but calibration does not. A simulation study and empirical validation using cardiovascular disease prediction models demonstrate the implications of this framework. This framework provides critical insights for evaluating and deploying prediction models across different clinical settings, emphasizing the importance of understanding the causal structure of the prediction task.