Precision rehabilitation offers the promise of an evidence-based approach for optimizing individual rehabilitation to improve long-term functional outcomes. Emerging techniques, including those driven by artificial intelligence, are rapidly expanding our ability to quantify the different domains of function during rehabilitation, other encounters with healthcare, and in the community. While this seems poised to usher rehabilitation into the era of big data and should be a powerful driver of precision rehabilitation, our field lacks a coherent framework to utilize these data and deliver on this promise. We propose a framework that builds upon multiple existing pillars to fill this gap. Our framework aims to identify the Optimal Dynamic Treatment Regimens (ODTR), or the decision-making strategy that takes in the range of available measurements and biomarkers to identify interventions likely to maximize long-term function. This is achieved by designing and fitting causal models, which extend the Computational Neurorehabilitation framework using tools from causal inference. These causal models can learn from heterogeneous data from different silos, which must include detailed documentation of interventions, such as using the Rehabilitation Treatment Specification System. The models then serve as digital twins of patient recovery trajectories, which can be used to learn the ODTR. Our causal modeling framework also emphasizes quantitatively linking changes across levels of the functioning to ensure that interventions can be precisely selected based on careful measurement of impairments while also being selected to maximize outcomes that are meaningful to patients and stakeholders. We believe this approach can provide a unifying framework to leverage growing big rehabilitation data and AI-powered measurements to produce precision rehabilitation treatments that can improve clinical outcomes.