We define a symmetric monoidal category modelling fuzzy concepts and fuzzy conceptual reasoning within G\"ardenfors' framework of conceptual (convex) spaces. We propose log-concave functions as models of fuzzy concepts, showing that these are the most general choice satisfying a criterion due to G\"ardenfors and which are well-behaved compositionally. We then generalise these to define the category of log-concave probabilistic channels between convex spaces, which allows one to model fuzzy reasoning with noisy inputs, and provides a novel example of a Markov category.