Finger vein pattern recognition is an emerging biometric with a good resistance to presentation attacks and low error rates. One problem is that it is hard to obtain ground truth finger vein patterns from live fingers. In this paper we propose an advanced method to create finger vein phantoms using 3D printing where we mimic the optical properties of the various tissues inside the fingers, like bone, veins and soft tissues using different printing materials and parameters. We demonstrate that we are able to create finger phantoms that result in realistic finger vein images and precisely known vein patterns. These phantoms can be used to develop and evaluate finger vein extraction and recognition methods. In addition, we show that the finger vein phantoms can be used to spoof a finger vein recognition system. This paper is based on the Master's thesis of Rasmus van der Grift.