3D object reconstructions of transparent and concave structured objects, with inferred material properties, remains an open research problem for robot navigation in unstructured environments. In this paper, we propose a multimodal single- and multi-frame neural network for 3D reconstructions using audio-visual inputs. Our trained reconstruction LSTM autoencoder 3D-MOV accepts multiple inputs to account for a variety of surface types and views. Our neural network produces high-quality 3D reconstructions using voxel representation. Based on Intersection-over-Union (IoU), we evaluate against other baseline methods using synthetic audio-visual datasets ShapeNet and Sound20K with impact sounds and bounding box annotations. To the best of our knowledge, our single- and multi-frame model is the first audio-visual reconstruction neural network for 3D geometry and material representation.