Fast and robust three-dimensional reconstruction of facial geometric structure from a single image is a challenging task with numerous applications. Here, we introduce a learning-based approach for reconstructing a three-dimensional face from a single image. Recent face recovery methods rely on accurate localization of key characteristic points. In contrast, the proposed approach is based on a Convolutional-Neural-Network (CNN) which extracts the face geometry directly from its image. Although such deep architectures outperform other models in complex computer vision problems, training them properly requires a large dataset of annotated examples. In the case of three-dimensional faces, currently, there are no large volume data sets, while acquiring such big-data is a tedious task. As an alternative, we propose to generate random, yet nearly photo-realistic, facial images for which the geometric form is known. The suggested model successfully recovers facial shapes from real images, even for faces with extreme expressions and under various lighting conditions.