Abstract:Due to different seasons, illumination, and atmospheric conditions, the photometric of the acquired image varies greatly, which leads to obvious stitching seams at the edges of the mosaic image. Traditional methods can be divided into two categories, one is absolute radiation correction and the other is relative radiation normalization. We propose a NeRF-based method of color consistency correction for multi-view images, which weaves image features together using implicit expressions, and then re-illuminates feature space to generate a fusion image with a new perspective. We chose Superview-1 satellite images and UAV images with large range and time difference for the experiment. Experimental results show that the synthesize image generated by our method has excellent visual effect and smooth color transition at the edges.
Abstract:Digital Elevation Model (DEM) plays a fundamental role in remote sensing and photogrammetry. Enhancing the quality of DEM is crucial for various applications. Although multiple types of defects may appear simultaneously in the same DEM, they are commonly addressed separately. Most existing approaches only aim to fill the DEM voids, or apply super-resolution to the intact DEM. This paper introduces a unified generative model that simultaneously addresses voids and low-resolution problems, rather than taking two separate measures. The proposed approach presents the DEM Stochastic Differential Equation (DEM-SDE) for unified DEM quality enhancement. The DEM degradation of downsampling and random voids adding is modeled as the SDE forwarding, and the restoration is achieved by simulating the corresponding revert process. Conditioned on the terrain feature, and adopting efficient submodules with lightweight channel attention, DEM-SDE simultaneously enhances the DEM quality with an efficient process for training. The experiments show that DEM-SDE method achieves highly competitive performance in simultaneous super-resolution and void filling compared to the state-of-the-art work. DEM-SDE also manifests robustness for larger DEM patches.