Abstract:This work investigates efficient score-based black-box adversarial attacks with a high Attack Success Rate (ASR) and good generalizability. We design a novel attack method based on a Disentangled Feature space, called DifAttack, which differs significantly from the existing ones operating over the entire feature space. Specifically, DifAttack firstly disentangles an image's latent feature into an adversarial feature and a visual feature, where the former dominates the adversarial capability of an image, while the latter largely determines its visual appearance. We train an autoencoder for the disentanglement by using pairs of clean images and their Adversarial Examples (AEs) generated from available surrogate models via white-box attack methods. Eventually, DifAttack iteratively optimizes the adversarial feature according to the query feedback from the victim model until a successful AE is generated, while keeping the visual feature unaltered. In addition, due to the avoidance of using surrogate models' gradient information when optimizing AEs for black-box models, our proposed DifAttack inherently possesses better attack capability in the open-set scenario, where the training dataset of the victim model is unknown. Extensive experimental results demonstrate that our method achieves significant improvements in ASR and query efficiency simultaneously, especially in the targeted attack and open-set scenarios. The code will be available at https://github.com/csjunjun/DifAttack.git soon.
Abstract:With the continuous research on Deepfake forensics, recent studies have attempted to provide the fine-grained localization of forgeries, in addition to the coarse classification at the video-level. However, the detection and localization performance of existing Deepfake forensic methods still have plenty of room for further improvement. In this work, we propose a Spatial-Temporal Deepfake Detection and Localization (ST-DDL) network that simultaneously explores spatial and temporal features for detecting and localizing forged regions. Specifically, we design a new Anchor-Mesh Motion (AMM) algorithm to extract temporal (motion) features by modeling the precise geometric movements of the facial micro-expression. Compared with traditional motion extraction methods (e.g., optical flow) designed to simulate large-moving objects, our proposed AMM could better capture the small-displacement facial features. The temporal features and the spatial features are then fused in a Fusion Attention (FA) module based on a Transformer architecture for the eventual Deepfake forensic tasks. The superiority of our ST-DDL network is verified by experimental comparisons with several state-of-the-art competitors, in terms of both video- and pixel-level detection and localization performance. Furthermore, to impel the future development of Deepfake forensics, we build a public forgery dataset consisting of 6000 videos, with many new features such as using widely-used commercial software (e.g., After Effects) for the production, providing online social networks transmitted versions, and splicing multi-source videos. The source code and dataset are available at https://github.com/HighwayWu/ST-DDL.