Abstract:The Kessler syndrome refers to the escalating space debris from frequent space activities, threatening future space exploration. Addressing this issue is vital. Several AI models, including Convolutional Neural Networks, Kernel Principal Component Analysis, and Model-Agnostic Meta- Learning have been assessed with various data types. Earlier studies highlighted the combination of the YOLO object detector and a linear Kalman filter (LKF) for object detection and tracking. Advancing this, the current paper introduces a novel methodology for the Comprehensive Orbital Surveillance and Monitoring Of Space by Detecting Satellite Residuals (CosmosDSR) by combining YOLOv3 with an Unscented Kalman Filter (UKF) for tracking satellites in sequential images. Using the Spacecraft Recognition Leveraging Knowledge of Space Environment (SPARK) dataset for training and testing, the YOLOv3 precisely detected and classified all satellite categories (Mean Average Precision=97.18%, F1=0.95) with few errors (TP=4163, FP=209, FN=237). Both CosmosDSR and an implemented LKF used for comparison tracked satellites accurately for a mean squared error (MSE) and root mean squared error (RME) of MSE=2.83/RMSE=1.66 for UKF and MSE=2.84/RMSE=1.66 for LKF. The current study is limited to images generated in a space simulation environment, but the CosmosDSR methodology shows great potential in detecting and tracking satellites, paving the way for solutions to the Kessler syndrome.
Abstract:There exists unexplained diverse variation within the predefined colon cancer stages using only features either from genomics or histopathological whole slide images as prognostic factors. Unraveling this variation will bring about improved in staging and treatment outcome, hence motivated by the advancement of Deep Neural Network libraries and different structures and factors within some genomic dataset, we aggregate atypical patterns in histopathological images with diverse carcinogenic expression from mRNA, miRNA and DNA Methylation as an integrative input source into an ensemble deep neural network for colon cancer stages classification and samples stratification into low or high risk survival groups. The results of our Ensemble Deep Convolutional Neural Network model show an improved performance in stages classification on the integrated dataset. The fused input features return Area under curve Receiver Operating Characteristic curve (AUC ROC) of 0.95 compared with AUC ROC of 0.71 and 0.68 obtained when only genomics and images features are used for the stage's classification, respectively. Also, the extracted features were used to split the patients into low or high risk survival groups. Among the 2548 fused features, 1695 features showed a statistically significant survival probability differences between the two risk groups defined by the extracted features.
Abstract:With the global issue of plastic debris ever expanding, it is about time that the technology industry stepped in. This study aims to assess whether deep learning can successfully distinguish between marine life and man-made debris underwater. The aim is to find if we are safely able to clean up our oceans with Artificial Intelligence without disrupting the delicate balance of the aquatic ecosystems. The research explores the use of Convolutional Neural Networks from the perspective of protecting the ecosystem, rather than primarily collecting rubbish. We did this by building a custom-built, deep learning model, with an original database including 1,644 underwater images and used a binary classification to sort synthesised material from aquatic life. We concluded that although it is possible to safely distinguish between debris and life, further exploration with a larger database and stronger CNN structure has the potential for much more promising results.