Abstract:This research examines the congruence between neural activity and advanced transformer models, emphasizing the semantic significance of punctuation in text understanding. Utilizing an innovative approach originally proposed by Toneva and Wehbe, we evaluate four advanced transformer models RoBERTa, DistiliBERT, ALBERT, and ELECTRA against neural activity data. Our findings indicate that RoBERTa exhibits the closest alignment with neural activity, surpassing BERT in accuracy. Furthermore, we investigate the impact of punctuation removal on model performance and neural alignment, revealing that BERT's accuracy enhances in the absence of punctuation. This study contributes to the comprehension of how neural networks represent language and the influence of punctuation on semantic processing within the human brain.
Abstract:The rapid advancement of Artificial Intelligence has resulted in the advent of Large Language Models (LLMs) with the capacity to produce text that closely resembles human communication. These models have been seamlessly integrated into diverse applications, enabling interactive and responsive communication across multiple platforms. The potential utility of chatbots transcends these traditional applications, particularly in research contexts, wherein they can offer valuable insights and facilitate the design of innovative experiments. In this study, we present a Customizable LLM-Powered Chatbot (CLPC), a web-based chatbot system designed to assist in behavioral science research. The system is meticulously designed to function as an experimental instrument rather than a conventional chatbot, necessitating users to input a username and experiment code upon access. This setup facilitates precise data cross-referencing, thereby augmenting the integrity and applicability of the data collected for research purposes. It can be easily expanded to accommodate new basic events as needed; and it allows researchers to integrate their own logging events without the necessity of implementing a separate logging mechanism. It is worth noting that our system was built to assist primarily behavioral science research but is not limited to it, it can easily be adapted to assist information retrieval research or interacting with chat bot agents in general.
Abstract:Brain decoding has emerged as a rapidly advancing and extensively utilized technique within neuroscience. This paper centers on the application of raw electroencephalogram (EEG) signals for decoding human brain activity, offering a more expedited and efficient methodology for enhancing our understanding of the human brain. The investigation specifically scrutinizes the efficacy of brain-computer interfaces (BCI) in deciphering neural signals associated with speech production, with particular emphasis on the impact of vocabulary size, electrode density, and training data on the framework's performance. The study reveals the competitive word error rates (WERs) achievable on the Librispeech benchmark through pre-training on unlabelled data for speech processing. Furthermore, the study evaluates the efficacy of voice recognition under configurations with limited labeled data, surpassing previous state-of-the-art techniques while utilizing significantly fewer labels. Additionally, the research provides a comprehensive analysis of error patterns in voice recognition and the influence of model size and unlabelled training data. It underscores the significance of factors such as vocabulary size and electrode density in enhancing BCI performance, advocating for an increase in microelectrodes and refinement of language models.
Abstract:The rapid advancement of artificial intelligence has resulted in the advent of large language models (LLMs) with the capacity to produce text that closely resembles human communication. These models have been seamlessly integrated into diverse applications, enabling interactive and responsive communication across multiple platforms. The potential utility of chatbots transcends these traditional applications, particularly in research contexts, wherein they can offer valuable insights and facilitate the design of innovative experiments. In this study, we present NSChat, a web-based chatbot system designed to assist in neuroscience research. The system is meticulously designed to function as an experimental instrument rather than a conventional chatbot, necessitating users to input a username and experiment code upon access. This setup facilitates precise data cross-referencing, thereby augmenting the integrity and applicability of the data collected for research purposes. It can be easily expanded to accommodate new basic events as needed; and it allows researchers to integrate their own logging events without the necessity of implementing a separate logging mechanism. It is worth noting that our system was built to assist primarily neuroscience research but is not limited to it, it can easily be adapted to assist information retrieval research or interacting with chat bot agents in general.
Abstract:In recent years, much interdisciplinary research has been conducted exploring potential use cases of neuroscience to advance the field of information retrieval. Initial research concentrated on the use of fMRI data, but fMRI was deemed to be not suitable for real-world applications, and soon, research shifted towards using EEG data. In this paper, we try to improve the original performance of a first attempt at generating text using EEG by focusing on the less explored area of optimising neural network performance. We test a set of different activation functions and compare their performance. Our results show that introducing a higher degree polynomial activation function can enhance model performance without changing the model architecture. We also show that the learnable 3rd-degree activation function performs better on the 1-gram evaluation compared to a 3rd-degree non-learnable function. However, when evaluating the model on 2-grams and above, the polynomial function lacks in performance, whilst the leaky ReLU activation function outperforms the baseline.