Abstract:Speech synthesis is one of the challenging tasks to automate by deep learning, also being a low-resource language there are very few attempts at Bangla speech synthesis. Most of the existing works can't work with anything other than simple Bangla characters script, very short sentences, etc. This work attempts to solve these problems by introducing Byakta, the first-ever open-source deep learning-based bilingual (Bangla and English) text to a speech synthesis system. A speech recognition model-based automated scoring metric was also proposed to evaluate the performance of a TTS model. We also introduce a test benchmark dataset for Bangla speech synthesis models for evaluating speech quality. The TTS is available at https://github.com/zabir-nabil/bangla-tts
Abstract:Idiopathic pulmonary fibrosis (IPF) is a restrictive interstitial lung disease that causes lung function decline by lung tissue scarring. Although lung function decline is assessed by the forced vital capacity (FVC), determining the accurate progression of IPF remains a challenge. To address this challenge, we proposed Fibro-CoSANet, a novel end-to-end multi-modal learning-based approach, to predict the FVC decline. Fibro-CoSANet utilized CT images and demographic information in convolutional neural network frameworks with a stacked attention layer. Extensive experiments on the OSIC Pulmonary Fibrosis Progression Dataset demonstrated the superiority of our proposed Fibro-CoSANet by achieving the new state-of-the-art modified Laplace Log-Likelihood score of -6.68. This network may benefit research areas concerned with designing networks to improve the prognostic accuracy of IPF. The source-code for Fibro-CoSANet is available at: \url{https://github.com/zabir-nabil/Fibro-CoSANet}.