Abstract:Cybersecurity is the security cornerstone of digital transformation of the power grid and construction of new power systems. The traditional network security situation quantification method only analyzes from the perspective of network performance, ignoring the impact of various power application services on the security situation, so the quantification results cannot fully reflect the power information network risk state. This study proposes a method for quantifying security situation of the power information network based on the evolutionary neural network. First, the security posture system architecture is designed by analyzing the business characteristics of power information network applications. Second, combining the importance of power application business, the spatial element index system of coupled interconnection is established from three dimensions of network reliability, threat, and vulnerability. Then, the BP neural network optimized by the genetic evolutionary algorithm is incorporated into the element index calculation process, and the quantitative model of security posture of the power information network based on the evolutionary neural network is constructed. Finally, a simulation experiment environment is built according to a power sector network topology, and the effectiveness and robustness of the method proposed in the study are verified.
Abstract:With the rapid advancement of the Energy Internet strategy, the number of sensors within the Power Distribution Internet of Things (PD-IoT) has increased dramatically. In this paper, an edge intelligence-based PD-IoT multi-source data processing and fusion method is proposed to solve the problems of confusing storage and insufficient fusion computing performance of multi-source heterogeneous distribution data. First, a PD-IoT multi-source data processing and fusion architecture based on edge smart terminals is designed. Second, to realize the uniform conversion of various sensor data sources in the distribution network in terms of magnitude and order of magnitude. By introducing the Box-Cox transform to improve the data offset problem in the Zscore normalization process, a multi-source heterogeneous data processing method for distribution networks based on the Box-Cox transform Zscore is proposed. Then, the conflicting phenomena of DS inference methods in data source fusion are optimally handled based on the PCA algorithm. A multi-source data fusion model based on DS inference with conflict optimization is constructed to ensure the effective fusion of distribution data sources from different domains. Finally, the effectiveness of the proposed method is verified by an experimental analysis of an IEEE39 node system in a regional distribution network in China.