Abstract:Causal discovery aims to estimate causal structures among variables based on observational data. Large Language Models (LLMs) offer a fresh perspective to tackle the causal discovery problem by reasoning on the metadata associated with variables rather than their actual data values, an approach referred to as knowledge-based causal discovery. In this paper, we investigate the capabilities of Small Language Models (SLMs, defined as LLMs with fewer than 1 billion parameters) with prompt-based learning for knowledge-based causal discovery. Specifically, we present KG Structure as Prompt, a novel approach for integrating structural information from a knowledge graph, such as common neighbor nodes and metapaths, into prompt-based learning to enhance the capabilities of SLMs. Experimental results on three types of biomedical and open-domain datasets under few-shot settings demonstrate the effectiveness of our approach, surpassing most baselines and even conventional fine-tuning approaches trained on full datasets. Our findings further highlight the strong capabilities of SLMs: in combination with knowledge graphs and prompt-based learning, SLMs demonstrate the potential to surpass LLMs with larger number of parameters. Our code and datasets are available on GitHub.
Abstract:In this paper, we introduce AutoRDF2GML, a framework designed to convert RDF data into data representations tailored for graph machine learning tasks. AutoRDF2GML enables, for the first time, the creation of both content-based features -- i.e., features based on RDF datatype properties -- and topology-based features -- i.e., features based on RDF object properties. Characterized by automated feature extraction, AutoRDF2GML makes it possible even for users less familiar with RDF and SPARQL to generate data representations ready for graph machine learning tasks, such as link prediction, node classification, and graph classification. Furthermore, we present four new benchmark datasets for graph machine learning, created from large RDF knowledge graphs using our framework. These datasets serve as valuable resources for evaluating graph machine learning approaches, such as graph neural networks. Overall, our framework effectively bridges the gap between the Graph Machine Learning and Semantic Web communities, paving the way for RDF-based machine learning applications.
Abstract:We present data augmentation techniques for process extraction tasks in scientific publications. We cast the process extraction task as a sequence labeling task where we identify all the entities in a sentence and label them according to their process-specific roles. The proposed method attempts to create meaningful augmented sentences by utilizing (1) process-specific information from the original sentence, (2) role label similarity, and (3) sentence similarity. We demonstrate that the proposed methods substantially improve the performance of the process extraction model trained on chemistry domain datasets, up to 12.3 points improvement in performance accuracy (F-score). The proposed methods could potentially reduce overfitting as well, especially when training on small datasets or in a low-resource setting such as in chemistry and other scientific domains.