Abstract:Reinforcement Learning (RL) has demonstrated a great potential for automatically solving decision making problems in complex uncertain environments. Basically, RL proposes a computational approach that allows learning through interaction in an environment of stochastic behavior, with agents taking actions to maximize some cumulative short-term and long-term rewards. Some of the most impressive results have been shown in Game Theory where agents exhibited super-human performance in games like Go or Starcraft 2, which led to its adoption in many other domains including Cloud Computing. Particularly, workflow autoscaling exploits the Cloud elasticity to optimize the execution of workflows according to a given optimization criteria. This is a decision-making problem in which it is necessary to establish when and how to scale-up/down computational resources; and how to assign them to the upcoming processing workload. Such actions have to be taken considering some optimization criteria in the Cloud, a dynamic and uncertain environment. Motivated by this, many works apply RL to the autoscaling problem in Cloud. In this work we survey exhaustively those proposals from major venues, and uniformly compare them based on a set of proposed taxonomies. We also discuss open problems and provide a prospective of future research in the area.