Abstract:Seasonal time series exhibit intricate long-term dependencies, posing a significant challenge for accurate future prediction. This paper introduces the Multi-scale Seasonal Decomposition Model (MSSD) for seasonal time-series forecasting. Initially, leveraging the inherent periodicity of seasonal time series, we decompose the univariate time series into three primary components: Ascending, Peak, and Descending. This decomposition approach enhances the capture of periodic features. By addressing the limitations of existing time-series modeling methods, particularly in modeling the Peak component, this research proposes a multi-scale network structure designed to effectively capture various potential peak fluctuation patterns in the Peak component. This study integrates Conv2d and Temporal Convolutional Networks to concurrently capture global and local features. Furthermore, we incorporate multi-scale reshaping to augment the modeling capacity for peak fluctuation patterns. The proposed methodology undergoes validation using three publicly accessible seasonal datasets. Notably, in both short-term and long-term fore-casting tasks, our approach exhibits a 10$\%$ reduction in error compared to the baseline models.
Abstract:With the proliferation of the Internet and smart devices, IoT technology has seen significant advancements and has become an integral component of smart homes, urban security, smart logistics, and other sectors. IoT facilitates real-time monitoring of critical production indicators, enabling businesses to detect potential quality issues, anticipate equipment malfunctions, and refine processes, thereby minimizing losses and reducing costs. Furthermore, IoT enhances real-time asset tracking, optimizing asset utilization and management. However, the expansion of IoT has also led to a rise in cybercrimes, with devices increasingly serving as vectors for malicious attacks. As the number of IoT devices grows, there is an urgent need for robust network security measures to counter these escalating threats. This paper introduces a deep learning model incorporating LSTM and attention mechanisms, a pivotal strategy in combating cybercrime in IoT networks. Our experiments, conducted on datasets including IoT-23, BoT-IoT, IoT network intrusion, MQTT, and MQTTset, demonstrate that our proposed method outperforms existing baselines.