Abstract:Presented study introduces a novel distributed cloud-edge framework for autonomous multi-UAV systems that combines the computational efficiency of neuromorphic computing with nature-inspired control strategies. The proposed architecture equips each UAV with an individual Spiking Neural Network (SNN) that learns to reproduce optimal control signals generated by a cloud-based controller, enabling robust operation even during communication interruptions. By integrating spike coding with nature-inspired control principles inspired by Tilapia fish territorial behavior, our system achieves sophisticated formation control and obstacle avoidance in complex urban environments. The distributed architecture leverages cloud computing for complex calculations while maintaining local autonomy through edge-based SNNs, significantly reducing energy consumption and computational overhead compared to traditional centralized approaches. Our framework addresses critical limitations of conventional methods, including the dependency on pre-modeled environments, computational intensity of traditional methods, and local minima issues in potential field approaches. Simulation results demonstrate the system's effectiveness across two different scenarios. First, the indoor deployment of a multi-UAV system made-up of 15 UAVs. Then the collision-free formation control of a moving UAV flock including 6 UAVs considering the obstacle avoidance. Owing to the sparsity of spiking patterns, and the event-based nature of SNNs in average for the whole group of UAVs, the framework achieves almost 90% reduction in computational burden compared to traditional von Neumann architectures implementing traditional artificial neural networks.
Abstract:State estimation of nonlinear dynamical systems has long aimed to balance accuracy, computational efficiency, robustness, and reliability. The rapid evolution of various industries has amplified the demand for estimation frameworks that satisfy all these factors. This study introduces a neuromorphic approach for robust filtering of nonlinear dynamical systems: SNN-EMSIF (spiking neural network-extended modified sliding innovation filter). SNN-EMSIF combines the computational efficiency and scalability of SNNs with the robustness of EMSIF, an estimation framework designed for nonlinear systems with zero-mean Gaussian noise. Notably, the weight matrices are designed according to the system model, eliminating the need for a learning process. The framework's efficacy is evaluated through comprehensive Monte Carlo simulations, comparing SNN-EMSIF with EKF and EMSIF. Additionally, it is compared with SNN-EKF in the presence of modeling uncertainties and neuron loss, using RMSEs as a metric. The results demonstrate the superior accuracy and robustness of SNN-EMSIF. Further analysis of runtimes and spiking patterns reveals an impressive reduction of 85% in emitted spikes compared to possible spikes, highlighting the computational efficiency of SNN-EMSIF. This framework offers a promising solution for robust estimation in nonlinear dynamical systems, opening new avenues for efficient and reliable estimation in various industries that can benefit from neuromorphic computing.
Abstract:Concurrent estimation and control of robotic systems remains an ongoing challenge, where controllers rely on data extracted from states/parameters riddled with uncertainties and noises. Framework suitability hinges on task complexity and computational constraints, demanding a balance between computational efficiency and mission-critical accuracy. This study leverages recent advancements in neuromorphic computing, particularly spiking neural networks (SNNs), for estimation and control applications. Our presented framework employs a recurrent network of leaky integrate-and-fire (LIF) neurons, mimicking a linear quadratic regulator (LQR) through a robust filtering strategy, a modified sliding innovation filter (MSIF). Benefiting from both the robustness of MSIF and the computational efficiency of SNN, our framework customizes SNN weight matrices to match the desired system model without requiring training. Additionally, the network employs a biologically plausible firing rule similar to predictive coding. In the presence of uncertainties, we compare the SNN-LQR-MSIF with non-spiking LQR-MSIF and the optimal linear quadratic Gaussian (LQG) strategy. Evaluation across a workbench linear problem and a satellite rendezvous maneuver, implementing the Clohessy-Wiltshire (CW) model in space robotics, demonstrates that the SNN-LQR-MSIF achieves acceptable performance in computational efficiency, robustness, and accuracy. This positions it as a promising solution for addressing dynamic systems' concurrent estimation and control challenges in dynamic systems.
Abstract:Energy efficiency and reliability have long been crucial factors for ensuring cost-effective and safe missions in autonomous systems computers. With the rapid evolution of industries such as space robotics and advanced air mobility, the demand for these low size, weight, and power (SWaP) computers has grown significantly. This study focuses on introducing an estimation framework based on spike coding theories and spiking neural networks (SNN), leveraging the efficiency and scalability of neuromorphic computers. Therefore, we propose an SNN-based Kalman filter (KF), a fundamental and widely adopted optimal strategy for well-defined linear systems. Furthermore, based on the modified sliding innovation filter (MSIF) we present a robust strategy called SNN-MSIF. Notably, the weight matrices of the networks are designed according to the system model, eliminating the need for learning. To evaluate the effectiveness of the proposed strategies, we compare them to their algorithmic counterparts, namely the KF and the MSIF, using Monte Carlo simulations. Additionally, we assess the robustness of SNN-MSIF by comparing it to SNN-KF in the presence of modeling uncertainties and neuron loss. Our results demonstrate the applicability of the proposed methods and highlight the superior performance of SNN-MSIF in terms of accuracy and robustness. Furthermore, the spiking pattern observed from the networks serves as evidence of the energy efficiency achieved by the proposed methods, as they exhibited an impressive reduction of approximately 97 percent in emitted spikes compared to possible spikes.