Abstract:Large Language Models (LLMs) are increasingly augmented with external tools through standardized interfaces like the Model Context Protocol (MCP). However, current MCP implementations face critical limitations: they typically require local process execution through STDIO transports, making them impractical for resource-constrained environments like mobile devices, web browsers, and edge computing. We present MCP Bridge, a lightweight RESTful proxy that connects to multiple MCP servers and exposes their capabilities through a unified API. Unlike existing solutions, MCP Bridge is fully LLM-agnostic, supporting any backend regardless of vendor. The system implements a risk-based execution model with three security levels standard execution, confirmation workflow, and Docker isolation while maintaining backward compatibility with standard MCP clients. Complementing this server-side infrastructure is a Python based MCP Gemini Agent that facilitates natural language interaction with MCP tools. The evaluation demonstrates that MCP Bridge successfully addresses the constraints of direct MCP connections while providing enhanced security controls and cross-platform compatibility, enabling sophisticated LLM-powered applications in previously inaccessible environments
Abstract:This paper presents a memristor-based compute-in-memory hardware accelerator for on-chip training and inference, focusing on its accuracy and efficiency against device variations, conductance errors, and input noise. Utilizing realistic SPICE models of commercially available silver-based metal self-directed channel (M-SDC) memristors, the study incorporates inherent device non-idealities into the circuit simulations. The hardware, consisting of 30 memristors and 4 neurons, utilizes three different M-SDC structures with tungsten, chromium, and carbon media to perform binary image classification tasks. An on-chip training algorithm precisely tunes memristor conductance to achieve target weights. Results show that incorporating moderate noise (<15%) during training enhances robustness to device variations and noisy input data, achieving up to 97% accuracy despite conductance variations and input noises. The network tolerates a 10% conductance error without significant accuracy loss. Notably, omitting the initial memristor reset pulse during training considerably reduces training time and energy consumption. The hardware designed with chromium-based memristors exhibits superior performance, achieving a training time of 2.4 seconds and an energy consumption of 18.9 mJ. This research provides insights for developing robust and energy-efficient memristor-based neural networks for on-chip learning in edge applications.
Abstract:This paper presents a comparative study of sampling methods within the FedHome framework, designed for personalized in-home health monitoring. FedHome leverages federated learning (FL) and generative convolutional autoencoders (GCAE) to train models on decentralized edge devices while prioritizing data privacy. A notable challenge in this domain is the class imbalance in health data, where critical events such as falls are underrepresented, adversely affecting model performance. To address this, the research evaluates six oversampling techniques using Stratified K-fold cross-validation: SMOTE, Borderline-SMOTE, Random OverSampler, SMOTE-Tomek, SVM-SMOTE, and SMOTE-ENN. These methods are tested on FedHome's public implementation over 200 training rounds with and without stratified K-fold cross-validation. The findings indicate that SMOTE-ENN achieves the most consistent test accuracy, with a standard deviation range of 0.0167-0.0176, demonstrating stable performance compared to other samplers. In contrast, SMOTE and SVM-SMOTE exhibit higher variability in performance, as reflected by their wider standard deviation ranges of 0.0157-0.0180 and 0.0155-0.0180, respectively. Similarly, the Random OverSampler method shows a significant deviation range of 0.0155-0.0176. SMOTE-Tomek, with a deviation range of 0.0160-0.0175, also shows greater stability but not as much as SMOTE-ENN. This finding highlights the potential of SMOTE-ENN to enhance the reliability and accuracy of personalized health monitoring systems within the FedHome framework.