Abstract:This paper presents a memristor-based compute-in-memory hardware accelerator for on-chip training and inference, focusing on its accuracy and efficiency against device variations, conductance errors, and input noise. Utilizing realistic SPICE models of commercially available silver-based metal self-directed channel (M-SDC) memristors, the study incorporates inherent device non-idealities into the circuit simulations. The hardware, consisting of 30 memristors and 4 neurons, utilizes three different M-SDC structures with tungsten, chromium, and carbon media to perform binary image classification tasks. An on-chip training algorithm precisely tunes memristor conductance to achieve target weights. Results show that incorporating moderate noise (<15%) during training enhances robustness to device variations and noisy input data, achieving up to 97% accuracy despite conductance variations and input noises. The network tolerates a 10% conductance error without significant accuracy loss. Notably, omitting the initial memristor reset pulse during training considerably reduces training time and energy consumption. The hardware designed with chromium-based memristors exhibits superior performance, achieving a training time of 2.4 seconds and an energy consumption of 18.9 mJ. This research provides insights for developing robust and energy-efficient memristor-based neural networks for on-chip learning in edge applications.
Abstract:This paper presents a comparative study of sampling methods within the FedHome framework, designed for personalized in-home health monitoring. FedHome leverages federated learning (FL) and generative convolutional autoencoders (GCAE) to train models on decentralized edge devices while prioritizing data privacy. A notable challenge in this domain is the class imbalance in health data, where critical events such as falls are underrepresented, adversely affecting model performance. To address this, the research evaluates six oversampling techniques using Stratified K-fold cross-validation: SMOTE, Borderline-SMOTE, Random OverSampler, SMOTE-Tomek, SVM-SMOTE, and SMOTE-ENN. These methods are tested on FedHome's public implementation over 200 training rounds with and without stratified K-fold cross-validation. The findings indicate that SMOTE-ENN achieves the most consistent test accuracy, with a standard deviation range of 0.0167-0.0176, demonstrating stable performance compared to other samplers. In contrast, SMOTE and SVM-SMOTE exhibit higher variability in performance, as reflected by their wider standard deviation ranges of 0.0157-0.0180 and 0.0155-0.0180, respectively. Similarly, the Random OverSampler method shows a significant deviation range of 0.0155-0.0176. SMOTE-Tomek, with a deviation range of 0.0160-0.0175, also shows greater stability but not as much as SMOTE-ENN. This finding highlights the potential of SMOTE-ENN to enhance the reliability and accuracy of personalized health monitoring systems within the FedHome framework.