Abstract:In this work, we propose a method for the classification of animal in images. Initially, a graph cut based method is used to perform segmentation in order to eliminate the background from the given image. The segmented animal images are partitioned in to number of blocks and then the color texture moments are extracted from different blocks. Probabilistic neural network and K-nearest neighbors are considered here for classification. To corroborate the efficacy of the proposed method, an experiment was conducted on our own data set of 25 classes of animals, which consisted of 4000 sample images. The experiment was conducted by picking images randomly from the database to study the effect of classification accuracy, and the results show that the K-nearest neighbors classifier achieves good performance.
Abstract:In this work, we propose a Triangle based approach to classify flower images. Initially, flowers are segmented using whorl based region merging segmentation. Skeleton of a flower is obtained from the segmented flower using a skeleton pruning method. The Delaunay triangulation is obtained from the endpoints and junction points detected on the skeleton. The length and angle features are extracted from the obtained Delaunay triangles and then are aggregated to represent in the form of interval-valued type data. A suitable classifier has been explored for the purpose of classification. To corroborate the efficacy of the proposed method, an experiment is conducted on our own data set of 30 classes of flowers, containing 3000 samples.