Abstract:Semantic communication has emerged as a new deep learning-based communication paradigm that drives the research of end-to-end data transmission in tasks like image classification, and image reconstruction. However, the security problem caused by semantic attacks has not been well explored, resulting in vulnerabilities within semantic communication systems exposed to potential semantic perturbations. In this paper, we propose a secure semantic communication system, DiffuSeC, which leverages the diffusion model and deep reinforcement learning (DRL) to address this issue. With the diffusing module in the sender end and the asymmetric denoising module in the receiver end, the DiffuSeC mitigates the perturbations added by semantic attacks, including data source attacks and channel attacks. To further improve the robustness under unstable channel conditions caused by semantic attacks, we developed a DRL-based channel-adaptive diffusion step selection scheme to achieve stable performance under fluctuating environments. A timestep synchronization scheme is designed for diffusion timestep coordination between the two ends. Simulation results demonstrate that the proposed DiffuSeC shows higher robust accuracy than previous works under a wide range of channel conditions, and can quickly adjust the model state according to signal-to-noise ratios (SNRs) in unstable environments.