Abstract:In this paper, we infer ingrained remote information in AC power flows using spiking neural network (SNN) as edge processors for efficient coordination of power electronic converters. This work unifies power and information as a means of data normalization using a multi-modal regime in the form of spikes using energy-efficient neuromorphic processing and semantics theory. Firstly, we organize the synchronous realvalued measurements at each edge and translate them into asynchronous spike-based events to collect sparse data for training of SNN at each edge. Instead of relying on error-dependent supervised data-driven learning theory, we exploit the latency-driven unsupervised Hebbian learning rule to obtain modulation pulses for switching of power electronic converters that can now communicate among each other. Not only does this philosophy block exogenous path arrival for cyber attackers by dismissing the cyber layer, it also entails converter adaptation to system reconfiguration and parameter mismatch issues. We conclude this work by validating its energy-efficient and effective online learning performance under various scenarios in modified IEEE 14-bus system and under experimental conditions.
Abstract:Synergies between advanced communications, computing and artificial intelligence are unraveling new directions of coordinated operation and resiliency in microgrids. On one hand, coordination among sources is facilitated by distributed, privacy-minded processing at multiple locations, whereas on the other hand, it also creates exogenous data arrival paths for adversaries that can lead to cyber-physical attacks amongst other reliability issues in the communication layer. This long-standing problem necessitates new intrinsic ways of exchanging information between converters through power lines to optimize the system's control performance. Going beyond the existing power and data co-transfer technologies that are limited by efficiency and scalability concerns, this paper proposes neuromorphic learning to implant communicative features using spiking neural networks (SNNs) at each node, which is trained collaboratively in an online manner simply using the power exchanges between the nodes. As opposed to the conventional neuromorphic sensors that operate with spiking signals, we employ an event-driven selective process to collect sparse data for training of SNNs. Finally, its multi-fold effectiveness and reliable performance is validated under simulation conditions with different microgrid topologies and components to establish a new direction in the sense-actuate-compute cycle for power electronic dominated grids and microgrids.