Abstract:Aspect-based sentiment analysis (ABSA) have been extensively studied, but little light has been shed on the quadruple extraction consisting of four fundamental elements: aspects, categories, opinions and sentiments, especially with implicit aspects and opinions. In this paper, we propose a new method iACOS for extracting Implicit Aspects with Categories and Opinions with Sentiments. First, iACOS appends two implicit tokens at the end of a text to capture the context-aware representation of all tokens including implicit aspects and opinions. Second, iACOS develops a sequence labeling model over the context-aware token representation to co-extract explicit and implicit aspects and opinions. Third, iACOS devises a multi-label classifier with a specialized multi-head attention for discovering aspect-opinion pairs and predicting their categories and sentiments simultaneously. Fourth, iACOS leverages informative and adaptive negative examples to jointly train the multi-label classifier and the other two classifiers on categories and sentiments by multi-task learning. Finally, the experimental results show that iACOS significantly outperforms other quadruple extraction baselines according to the F1 score on two public benchmark datasets.
Abstract:Recently, ChatGPT has attracted great attention from both industry and academia due to its surprising abilities in natural language understanding and generation. We are particularly curious about whether it can achieve promising performance on one of the most complex tasks in aspect-based sentiment analysis, i.e., extracting aspect-category-opinion-sentiment quadruples from texts. To this end, in this paper we develop a specialized prompt template that enables ChatGPT to effectively tackle this complex quadruple extraction task. Further, we propose a selection method on few-shot examples to fully exploit the in-context learning ability of ChatGPT and uplift its effectiveness on this complex task. Finally, we provide a comparative evaluation on ChatGPT against existing state-of-the-art quadruple extraction models based on four public datasets and highlight some important findings regarding the capability boundaries of ChatGPT in the quadruple extraction.