Abstract:Thermography has been used extensively as a complementary diagnostic tool in breast cancer detection. Among thermographic methods matrix factorization (MF) techniques show an unequivocal capability to detect thermal patterns corresponding to vasodilation in cancer cases. One of the biggest challenges in such techniques is selecting the best representation of the thermal basis. In this study, an embedding method is proposed to address this problem and Deep-semi-nonnegative matrix factorization (Deep-SemiNMF) for thermography is introduced, then tested for 208 breast cancer screening cases. First, we apply Deep-SemiNMF to infrared images to extract low-rank thermal representations for each case. Then, we embed low-rank bases to obtain one basis for each patient. After that, we extract 300 thermal imaging features, called thermomics, to decode imaging information for the automatic diagnostic model. We reduced the dimensionality of thermomics by spanning them onto Hilbert space using RBF kernel and select the three most efficient features using the block Hilbert Schmidt Independence Criterion Lasso (block HSIC Lasso). The preserved thermal heterogeneity successfully classified asymptomatic versus symptomatic patients applying a random forest model (cross-validated accuracy of 71.36% (69.42%-73.3%)).
Abstract:Active and passive thermography are two efficient techniques extensively used to measure heterogeneous thermal patterns leading to subsurface defects for diagnostic evaluations. This study conducts a comparative analysis on low-rank matrix approximation methods in thermography with applications of semi-, convex-, and sparse- non-negative matrix factorization (NMF) methods for detecting subsurface thermal patterns. These methods inherit the advantages of principal component thermography (PCT) and sparse PCT, whereas tackle negative bases in sparse PCT with non-negative constraints, and exhibit clustering property in processing data. The practicality and efficiency of these methods are demonstrated by the experimental results for subsurface defect detection in three specimens (for different depth and size defects) and preserving thermal heterogeneity for distinguishing breast abnormality in breast cancer screening dataset (accuracy of 74.1%, 75.8%, and 77.8%).
Abstract:Multiscale shape skeletonization on pixel adjacency graphs is an advanced intriguing research subject in the field of image processing, computer vision and data mining. The previous works in this area almost focused on the graph vertices. We proposed novel structured based graph morphological transformations based on edges opposite to the current node based transformations and used them for deploying skeletonization and reconstruction of infrared thermal images represented by graphs. The advantage of this method is that many widely used path based approaches become available within this definition of morphological operations. For instance, we use distance maps and image foresting transform (IFT) as two main path based methods are utilized for computing the skeleton of an image. Moreover, In addition, the open question proposed by Maragos et al (2013) about connectivity of graph skeletonization method are discussed and shown to be quite difficult to decide in general case.