Abstract:Recommendation systems are ubiquitous, from Spotify playlist suggestions to Amazon product suggestions. Nevertheless, depending on the methodology or the dataset, these systems typically fail to capture user preferences and generate general recommendations. Recent advancements in Large Language Models (LLM) offer promising results for analyzing user queries. However, employing these models to capture user preferences and efficiency remains an open question. In this paper, we propose LLMRS, an LLM-based zero-shot recommender system where we employ pre-trained LLM to encode user reviews into a review score and generate user-tailored recommendations. We experimented with LLMRS on a real-world dataset, the Amazon product reviews, for software purchase use cases. The results show that LLMRS outperforms the ranking-based baseline model while successfully capturing meaningful information from product reviews, thereby providing more reliable recommendations.
Abstract:Sports officials around the world are facing incredible challenges due to the unfair means of practices performed by the athletes to improve their performance in the game. It includes the intake of hormonal based drugs or transfusion of blood to increase their strength and the result of their training. However, the current direct test of detection of these cases includes the laboratory-based method, which is limited because of the cost factors, availability of medical experts, etc. This leads us to seek for indirect tests. With the growing interest of Artificial Intelligence in healthcare, it is important to propose an algorithm based on blood parameters to improve decision making. In this paper, we proposed a statistical and machine learning-based approach to identify the presence of doping substance rhEPO in blood samples.