Abstract:The paper presents a study of local search heuristics in general and variable neighborhood search in particular for the resolution of an assignment problem studied in the practical work of universities. Here, students have to be assigned to scientific topics which are proposed and supported by members of staff. The problem involves the optimization under given preferences of students which may be expressed when applying for certain topics. It is possible to observe that variable neighborhood search leads to superior results for the tested problem instances. One instance is taken from an actual case, while others have been generated based on the real world data to support the analysis with a deeper analysis. An extension of the problem has been formulated by integrating a second objective function that simultaneously balances the workload of the members of staff while maximizing utility of the students. The algorithmic approach has been prototypically implemented in a computer system. One important aspect in this context is the application of the research work to problems of other scientific institutions, and therefore the provision of decision support functionalities.
Abstract:The article presents a framework for the resolution of rich vehicle routing problems which are difficult to address with standard optimization techniques. We use local search on the basis on variable neighborhood search for the construction of the solutions, but embed the techniques in a flexible framework that allows the consideration of complex side constraints of the problem such as time windows, multiple depots, heterogeneous fleets, and, in particular, multiple optimization criteria. In order to identify a compromise alternative that meets the requirements of the decision maker, an interactive procedure is integrated in the resolution of the problem, allowing the modification of the preference information articulated by the decision maker. The framework is prototypically implemented in a computer system. First results of test runs on multiple depot vehicle routing problems with time windows are reported.