Abstract:Graph Neural Networks (GNNs) can be trained to detect communities within a graph by learning from the duality of feature and connectivity information. Currently, the common approach for optimisation of GNNs is to use comparisons to ground-truth for hyperparameter tuning and model selection. In this work, we show that nodes can be clustered into communities with GNNs by solely optimising for modularity, without any comparison to ground-truth. Although modularity is a graph partitioning quality metric, we show that this can be used to optimise GNNs that also encode features without a drop in performance. We take it a step further and also study whether the unsupervised metric performance can predict ground-truth performance. To investigate why modularity can be used to optimise GNNs, we design synthetic experiments that show the limitations of this approach. The synthetic graphs are created to highlight current capabilities in distinct, random and zero information space partitions in attributed graphs. We conclude that modularity can be used for hyperparameter optimisation and model selection on real-world datasets as well as being a suitable proxy for predicting ground-truth performance, however, GNNs fail to balance the information duality when the spaces contain conflicting signals.
Abstract:(1) The enhanced capability of Graph Neural Networks (GNNs) in unsupervised community detection of clustered nodes is attributed to their capacity to encode both the connectivity and feature information spaces of graphs. The identification of latent communities holds practical significance in various domains, from social networks to genomics. Current real-world performance benchmarks are perplexing due to the multitude of decisions influencing GNN evaluations for this task. (2) Three metrics are compared to assess the consistency of algorithm rankings in the presence of randomness. The consistency and quality of performance between the results under a hyperparameter optimisation with the default hyperparameters is evaluated. (3) The results compare hyperparameter optimisation with default hyperparameters, revealing a significant performance loss when neglecting hyperparameter investigation. A comparison of metrics indicates that ties in ranks can substantially alter the quantification of randomness. (4) Ensuring adherence to the same evaluation criteria may result in notable differences in the reported performance of methods for this task. The $W$ Randomness coefficient, based on the Wasserstein distance, is identified as providing the most robust assessment of randomness.
Abstract:Federated Learning is machine learning in the context of a network of clients whilst maintaining data residency and/or privacy constraints. Community detection is the unsupervised discovery of clusters of nodes within graph-structured data. The intersection of these two fields uncovers much opportunity, but also challenge. For example, it adds complexity due to missing connectivity information between privately held graphs. In this work, we explore the potential of federated community detection by conducting initial experiments across a range of existing datasets that showcase the gap in performance introduced by the distributed data. We demonstrate that isolated models would benefit from collaboration establishing a framework for investigating challenges within this domain. The intricacies of these research frontiers are discussed alongside proposed solutions to these issues.