Abstract:Temporal reasoning (TR) is a critical component of artificial intelligence, encompassing understanding and processing temporal information and relationships between events. To discover and study the TR ability in Large Language Models (LLMs), various datasets have been constructed in different ways for evaluating various aspects of TR ability. Our work proposes a novel approach to design and develop a pipeline for constructing datasets to evaluate the TR ability of LLMs by leveraging random directed graph generation, LTL formula, and the NuSMV model checker. Based on the pipeline, we have also constructed a dataset as a benchmark, namely LTLBench, consisting of 2,000 TR challenges and evaluated six LLMs with it. Furthermore, we have conducted additional experiments to discover the impact of increasing the number of events and formula operators on the complexity of TR problems and the performance of LLMs. We have demonstrated that although LLMs exhibit some promise in handling TR challenges, they still struggle with complex TR. We expect this work can offer insights into TR ability in LLMs while also providing a valuable tool for future TR evaluations.
Abstract:Large Language Models (LLMs) have recently shown a promise and emergence of Theory of Mind (ToM) ability and even outperform humans in certain ToM tasks. To evaluate and extend the boundaries of the ToM reasoning ability of LLMs, we propose a novel concept, taxonomy, and framework, the ToM reasoning with Zero, Finite, and Infinite Belief History and develop a multi-round text-based game, called $\textit{Pick the Right Stuff}$, as a benchmark. We have evaluated six LLMs with this game and found their performance on Zero Belief History is consistently better than on Finite Belief History. In addition, we have found two of the models with small parameter sizes outperform all the evaluated models with large parameter sizes. We expect this work to pave the way for future ToM benchmark development and also for the promotion and development of more complex AI agents or systems which are required to be equipped with more complex ToM reasoning ability.
Abstract:Theory of Mind (ToM) refers to the ability of individuals to attribute mental states to others. While Large Language Models (LLMs) have shown some promise with ToM ability, they still struggle with complex ToM reasoning. Our approach leverages an external symbolic executor, specifically the SMCDEL model checker, and fine-tuning to improve the ToM reasoning ability of LLMs. In our approach, an LLM is first fine-tuned through pairs of natural language and symbolic formulation representation of ToM problems and is then instructed to generate the symbolic formulation with a one-shot in-context example. The generated symbolic formulation is then executed by the SMCDEL model checker to perform transparent and verifiable ToM reasoning and give the final result. We demonstrate that our approach, ToM-LM, shows a significant improvement over all the constructed baselines. Our study proposes a novel view about externalizing a particular component of ToM reasoning, mainly reasoning about beliefs, and suggests generalizing it to other aspects of ToM reasoning.