Abstract:Automated fact-checking is a crucial task in the governance of internet content. Although various studies utilize advanced models to tackle this issue, a significant gap persists in addressing complex real-world rumors and deceptive claims. To address this challenge, this paper explores the novel task of flaw-oriented fact-checking, including aspect generation and flaw identification. We also introduce RefuteClaim, a new framework designed specifically for this task. Given the absence of an existing dataset, we present FlawCheck, a dataset created by extracting and transforming insights from expert reviews into relevant aspects and identified flaws. The experimental results underscore the efficacy of RefuteClaim, particularly in classifying and elucidating false claims.