Abstract:This paper studies four Graph Neural Network architectures (GNNs) for a graph classification task on a synthetic dataset created using classic generative models of Network Science. Since the synthetic networks do not contain (node or edge) features, five different augmentation strategies (artificial feature types) are applied to nodes. All combinations of the 4 GNNs (GCN with Hierarchical and Global aggregation, GIN and GATv2) and the 5 feature types (constant 1, noise, degree, normalized degree and ID -- a vector of the number of cycles of various lengths) are studied and their performances compared as a function of the hidden dimension of artificial neural networks used in the GNNs. The generalisation ability of these models is also analysed using a second synthetic network dataset (containing networks of different sizes).Our results point towards the balanced importance of the computational power of the GNN architecture and the the information level provided by the artificial features. GNN architectures with higher computational power, like GIN and GATv2, perform well for most augmentation strategies. On the other hand, artificial features with higher information content, like ID or degree, not only consistently outperform other augmentation strategies, but can also help GNN architectures with lower computational power to achieve good performance.
Abstract:One of the most important problems in computer vision and remote sensing is object detection, which identifies particular categories of diverse things in pictures. Two crucial data sources for public security are the thermal infrared (TIR) remote sensing multi-scenario photos and videos produced by unmanned aerial vehicles (UAVs). Due to the small scale of the target, complex scene information, low resolution relative to the viewable videos, and dearth of publicly available labeled datasets and training models, their object detection procedure is still difficult. A UAV TIR object detection framework for pictures and videos is suggested in this study. The Forward-looking Infrared (FLIR) cameras used to gather ground-based TIR photos and videos are used to create the ``You Only Look Once'' (YOLO) model, which is based on CNN architecture. Results indicated that in the validating task, detecting human object had an average precision at IOU (Intersection over Union) = 0.5, which was 72.5\%, using YOLOv7 (YOLO version 7) state of the art model \cite{1}, while the detection speed around 161 frames per second (FPS/second). The usefulness of the YOLO architecture is demonstrated in the application, which evaluates the cross-detection performance of people in UAV TIR videos under a YOLOv7 model in terms of the various UAVs' observation angles. The qualitative and quantitative evaluation of object detection from TIR pictures and videos using deep-learning models is supported favorably by this work.