Abstract:We evolve floating point Sextic polynomial populations of genetic programming binary trees for up to a million generations. Programs with almost four hundred million instructions are created by crossover. To support unbounded Long-Term Evolution Experiment LTEE GP we use both SIMD parallel AVX 512 bit instructions and 48 threads to yield performance of up to 139 billion GP operations per second, 139 giga GPops, on a single Intel Xeon Gold 6126 2.60GHz server.
Abstract:We discuss how to use a Genetic Regulatory Network as an evolutionary representation to solve a typical GP reinforcement problem, the pole balancing. The network is a modified version of an Artificial Regulatory Network proposed a few years ago, and the task could be solved only by finding a proper way of connecting inputs and outputs to the network. We show that the representation is able to generalize well over the problem domain, and discuss the performance of different models of this kind.