Abstract:With the increased size and complexity of seismic surveys, manual labeling of seismic facies has become a significant challenge. Application of automatic methods for seismic facies interpretation could significantly reduce the manual labor and subjectivity of a particular interpreter present in conventional methods. A recently emerged group of methods is based on deep neural networks. These approaches are data-driven and require large labeled datasets for network training. We apply a deep convolutional autoencoder for unsupervised seismic facies classification, which does not require manually labeled examples. The facies maps are generated by clustering the deep-feature vectors obtained from the input data. Our method yields accurate results on real data and provides them instantaneously. The proposed approach opens up possibilities to analyze geological patterns in real time without human intervention.
Abstract:Inversion of electromagnetic data finds applications in many areas of geophysics. The inverse problem is commonly solved with either deterministic optimization methods (such as the nonlinear conjugate gradient or Gauss-Newton) which are prone to getting trapped in a local minimum, or probabilistic methods which are very computationally demanding. A recently emerging alternative is to employ deep neural networks for predicting subsurface model properties from measured data. This approach is entirely data-driven, does not employ traditional gradient-based techniques and provides a guess to the model instantaneously. In this study, we apply deep convolutional neural networks for 1D inversion of marine frequency-domain controlled-source electromagnetic (CSEM) data as well as onshore time-domain electromagnetic (TEM) data. Our approach yields accurate results both on synthetic and real data and provides them instantaneously. Using several networks and combining their outputs from various training epochs can also provide insights into the uncertainty distribution, which is found to be higher in the regions where resistivity anomalies are present. The proposed method opens up possibilities to estimate the subsurface resistivity distribution in exploration scenarios in real time.
Abstract:This study attempts to analyze patterns in cryptocurrency markets using a special type of deep neural networks, namely a convolutional autoencoder. The method extracts the dominant features of market behavior and classifies the 40 studied cryptocurrencies into several classes for twelve 6-month periods starting from 15th May 2013. Transitions from one class to another with time are related to the maturement of cryptocurrencies. In speculative cryptocurrency markets, these findings have potential implications for investment and trading strategies.
Abstract:Geophysical inversion attempts to estimate the distribution of physical properties in the Earth's interior from observations collected at or above the surface. Inverse problems are commonly posed as least-squares optimization problems in high-dimensional parameter spaces. Existing approaches are largely based on deterministic gradient-based methods, which are limited by nonlinearity and nonuniqueness of the inverse problem. Probabilistic inversion methods, despite their great potential in uncertainty quantification, still remain a formidable computational task. In this paper, I explore the potential of deep learning methods for electromagnetic inversion. This approach does not require calculation of the gradient and provides results instantaneously. Deep neural networks based on fully convolutional architecture are trained on large synthetic datasets obtained by full 3-D simulations. The performance of the method is demonstrated on models of strong practical relevance representing an onshore controlled source electromagnetic CO2 monitoring scenario. The pre-trained networks can reliably estimate the position and lateral dimensions of the anomalies, as well as their resistivity properties. Several fully convolutional network architectures are compared in terms of their accuracy, generalization, and cost of training. Examples with different survey geometry and noise levels confirm the feasibility of the deep learning inversion, opening the possibility to estimate the subsurface resistivity distribution in real time.