Abstract:Advances in neural sensing technology are making it possible to observe the olfactory process in great detail. In this paper, we conceptualize smell from a Data Science and AI perspective, that relates the properties of odorants to how they are sensed and analyzed in the olfactory system from the nose to the brain. Drawing distinctions to color vision, we argue that smell presents unique measurement challenges, including the complexity of stimuli, the high dimensionality of the sensory apparatus, as well as what constitutes ground truth. In the face of these challenges, we argue for the centrality of odorant-receptor interactions in developing a theory of olfaction. Such a theory is likely to find widespread industrial applications, and enhance our understanding of smell, and in the longer-term, how it relates to other senses and language. As an initial use case of the data, we present results using machine learning-based classification of neural responses to odors as they are recorded in the mouse olfactory bulb with calcium imaging.
Abstract:Experiencing images with suitable music can greatly enrich the overall user experience. The proposed image analysis method treats an artwork image differently from a photograph image. Automatic image classification is performed using deep-learning based models. An illustrative analysis showcasing the ability of our deep-models to inherently learn and utilize perceptually relevant features when classifying artworks is also presented. The Mean Opinion Score (MOS) obtained from subjective assessments of the respective image and recommended music pairs supports the effectiveness of our approach.