Abstract:Visual Question Answering (VQA) is an emerging area of interest for researches, being a recent problem in natural language processing and image prediction. In this area, an algorithm needs to answer questions about certain images. As of the writing of this survey, 25 recent studies were analyzed. Besides, 6 datasets were analyzed and provided their link to download. In this work, several recent pieces of research in this area were investigated and a deeper analysis and comparison among them were provided, including results, the state-of-the-art, common errors, and possible points of improvement for future researchers.
Abstract:Over the last few years, the number of works about deep learning applied to the medical field has increased enormously. The necessity of a rigorous assessment of these models is required to explain these results to all people involved in medical exams. A recent field in the machine learning area is explainable artificial intelligence, also known as XAI, which targets to explain the results of such black box models to permit the desired assessment. This survey analyses several recent studies in the XAI field applied to medical diagnosis research, allowing some explainability of the machine learning results in several different diseases, such as cancers and COVID-19.