Istituto di Scienza e Tecnologie dell'Informazione "A. Faedo", Consiglio Nazionale delle Ricerche
Abstract:Topological Spatial Model Checking is a recent paradigm that combines Model Checking with the topological interpretation of Modal Logic. The Spatial Logic of Closure Spaces, SLCS, extends Modal Logic with reachability connectives that, in turn, can be used for expressing interesting spatial properties, such as "being near to" or "being surrounded by". SLCS constitutes the kernel of a solid logical framework for reasoning about discrete space, such as graphs and digital images, interpreted as quasi discrete closure spaces. In particular, the spatial model checker VoxLogicA, that uses an extended version of SLCS, has been used successfully in the domain of medical imaging. However, SLCS is not restricted to discrete space. Following a recently developed geometric semantics of Modal Logic, we show that it is possible to assign an interpretation to SLCS in continuous space, admitting a model checking procedure, by resorting to models based on polyhedra. In medical imaging such representations of space are increasingly relevant, due to recent developments of 3D scanning and visualisation techniques that exploit mesh processing. We demonstrate feasibility of our approach via a new tool, PolyLogicA, aimed at efficient verification of SLCS formulas on polyhedra, while inheriting some well-established optimization techniques already adopted in VoxLogicA. Finally, we cater for a geometric definition of bisimilarity, proving that it characterises logical equivalence.
Abstract:Spatial and spatio-temporal model checking techniques have a wide range of application domains, among which large scale distributed systems and signal and image analysis. In the latter domain, automatic and semi-automatic contouring in Medical Imaging has shown to be a very promising and versatile application that can greatly facilitate the work of professionals in this domain, while supporting explainability, easy replicability and exchange of medical image analysis methods. In recent work we have applied this model-checking technique to the (3D) contouring of tumours and related oedema in magnetic resonance images of the brain. In the current work we address the contouring of (2D) images of nevi. One of the challenges of treating nevi images is their considerable inhomogeneity in shape, colour, texture and size. To deal with this challenge we use a texture similarity operator, in combination with spatial logic operators. We apply our technique on images of a large public database and compare the results with associated ground truth segmentation provided by domain experts.
Abstract:The tool voxlogica merges the state-of-the-art library of computational imaging algorithms ITK with the combination of declarative specification and optimised execution provided by spatial logic model checking. The analysis of an existing benchmark for segmentation of brain tumours via a simple logical specification reached state-of-the-art accuracy. We present a new, GPU-based version of voxlogica and discuss its implementation, scalability, and applications.
Abstract:Recent research on spatial and spatio-temporal model checking provides novel image analysis methodologies, rooted in logical methods for topological spaces. Medical Imaging (MI) is a field where such methods show potential for ground-breaking innovation. Our starting point is SLCS, the Spatial Logic for Closure Spaces -- Closure Spaces being a generalisation of topological spaces, covering also discrete space structures -- and topochecker, a model-checker for SLCS (and extensions thereof). We introduce the logical language ImgQL ("Image Query Language"). ImgQL extends SLCS with logical operators describing distance and region similarity. The spatio-temporal model checker topochecker is correspondingly enhanced with state-of-the-art algorithms, borrowed from computational image processing, for efficient implementation of distancebased operators, namely distance transforms. Similarity between regions is defined by means of a statistical similarity operator, based on notions from statistical texture analysis. We illustrate our approach by means of two examples of analysis of Magnetic Resonance images: segmentation of glioblastoma and its oedema, and segmentation of rectal carcinoma.
Abstract:Recent research on formal verification for Collective Adaptive Systems (CAS) pushed advancements in spatial and spatio-temporal model checking, and as a side result provided novel image analysis methodologies, rooted in logical methods for topological spaces. Medical Imaging (MI) is a field where such technologies show potential for ground-breaking innovation. In this position paper, we present a preliminary investigation centred on applications of spatial model checking to MI. The focus is shifted from pure logics to a mixture of logical, statistical and algorithmic approaches, driven by the logical nature intrinsic to the specification of the properties of interest in the field. As a result, novel operators are introduced, that could as well be brought back to the setting of CAS.