Abstract:Medical imaging is essential in modern radiotherapy, supporting diagnosis, treatment planning, and monitoring. Synthetic imaging, particularly synthetic computed tomography (sCT), is gaining traction in radiotherapy. The SynthRAD2025 dataset and Grand Challenge promote advancements in sCT generation by providing a benchmarking platform for algorithms using cone-beam CT (CBCT) and magnetic resonance imaging (MRI). The dataset includes 2362 cases: 890 MRI-CT and 1472 CBCT-CT pairs from head-and-neck, thoracic, and abdominal cancer patients treated at five European university medical centers (UMC Groningen, UMC Utrecht, Radboud UMC, LMU University Hospital Munich, and University Hospital of Cologne). Data were acquired with diverse scanners and protocols. Pre-processing, including rigid and deformable image registration, ensures high-quality, modality-aligned images. Extensive quality assurance validates image consistency and usability. All imaging data is provided in MetaImage (.mha) format, ensuring compatibility with medical image processing tools. Metadata, including acquisition parameters and registration details, is available in structured CSV files. To maintain dataset integrity, SynthRAD2025 is divided into training (65%), validation (10%), and test (25%) sets. The dataset is accessible at https://doi.org/10.5281/zenodo.14918089 under the SynthRAD2025 collection. This dataset supports benchmarking and the development of synthetic imaging techniques for radiotherapy applications. Use cases include sCT generation for MRI-only and MR-guided photon/proton therapy, CBCT-based dose calculations, and adaptive radiotherapy workflows. By integrating diverse acquisition settings, SynthRAD2025 fosters robust, generalizable image synthesis algorithms, advancing personalized cancer care and adaptive radiotherapy.
Abstract:Radiotherapy treatment for prostate cancer relies on computed tomography (CT) and/or magnetic resonance imaging (MRI) for segmentation of target volumes and organs at risk (OARs). Manual segmentation of these volumes is regarded as the gold standard for ground truth in machine learning applications but to acquire such data is tedious and time-consuming. A publicly available clinical dataset is presented, comprising MRI- and synthetic CT (sCT) images, target and OARs segmentations, and radiotherapy dose distributions for 432 prostate cancer patients treated with MRI-guided radiotherapy. An extended dataset with 35 patients is also included, with the addition of deep learning (DL)-generated segmentations, DL segmentation uncertainty maps, and DL segmentations manually adjusted by four radiation oncologists. The publication of these resources aims to aid research within the fields of automated radiotherapy treatment planning, segmentation, inter-observer analyses, and DL model uncertainty investigation. The dataset is hosted on the AIDA Data Hub and offers a free-to-use resource for the scientific community, valuable for the advancement of medical imaging and prostate cancer radiotherapy research.