Abstract:Accurate prediction of food delivery times significantly impacts customer satisfaction, operational efficiency, and profitability in food delivery services. However, existing studies primarily utilize static historical data and often overlook dynamic, real-time contextual factors crucial for precise prediction, particularly in densely populated Indian cities. This research addresses these gaps by integrating real-time contextual variables such as traffic density, weather conditions, local events, and geospatial data (restaurant and delivery location coordinates) into predictive models. We systematically compare various machine learning algorithms, including Linear Regression, Decision Trees, Bagging, Random Forest, XGBoost, and LightGBM, on a comprehensive food delivery dataset specific to Indian urban contexts. Rigorous data preprocessing and feature selection significantly enhanced model performance. Experimental results demonstrate that the LightGBM model achieves superior predictive accuracy, with an R2 score of 0.76 and Mean Squared Error (MSE) of 20.59, outperforming traditional baseline approaches. Our study thus provides actionable insights for improving logistics strategies in complex urban environments. The complete methodology and code are publicly available for reproducibility and further research.
Abstract:In the contemporary film industry, accurately predicting a movie's earnings is paramount for maximizing profitability. This project aims to develop a machine learning model for predicting movie earnings based on input features like the movie name, the MPAA rating of the movie, the genre of the movie, the year of release of the movie, the IMDb Rating, the votes by the watchers, the director, the writer and the leading cast, the country of production of the movie, the budget of the movie, the production company and the runtime of the movie. Through a structured methodology involving data collection, preprocessing, analysis, model selection, evaluation, and improvement, a robust predictive model is constructed. Linear Regression, Decision Trees, Random Forest Regression, Bagging, XGBoosting and Gradient Boosting have been trained and tested. Model improvement strategies include hyperparameter tuning and cross-validation. The resulting model offers promising accuracy and generalization, facilitating informed decision-making in the film industry to maximize profits.