Abstract:This paper explores the potential of abstracting complex visual information into discrete, structured symbolic sequences using self-supervised learning (SSL). Inspired by how language abstracts and organizes information to enable better reasoning and generalization, we propose a novel approach for generating symbolic representations from visual data. To learn these sequences, we extend the DINO framework to handle visual and symbolic information. Initial experiments suggest that the generated symbolic sequences capture a meaningful level of abstraction, though further refinement is required. An advantage of our method is its interpretability: the sequences are produced by a decoder transformer using cross-attention, allowing attention maps to be linked to specific symbols and offering insight into how these representations correspond to image regions. This approach lays the foundation for creating interpretable symbolic representations with potential applications in high-level scene understanding.