Abstract:This study presents a novel algorithm based on machine learning (ML) for the precise segmentation and measurement of detonation cells from soot foil images, addressing the limitations of manual and primitive edge detection methods prevalent in the field. Using advances in cellular biology segmentation models, the proposed algorithm is designed to accurately extract cellular patterns without a training procedure or dataset, which is a significant challenge in detonation research. The algorithm's performance was validated using a series of test cases that mimic experimental and numerical detonation studies. The results demonstrated consistent accuracy, with errors remaining within 10%, even in complex cases. The algorithm effectively captured key cell metrics such as cell area and span, revealing trends across different soot foil samples with uniform to highly irregular cellular structures. Although the model proved robust, challenges remain in segmenting and analyzing highly complex or irregular cellular patterns. This work highlights the broad applicability and potential of the algorithm to advance the understanding of detonation wave dynamics.
Abstract:This research explores the integration of large language models (LLMs) into scientific data assimilation, focusing on combustion science as a case study. Leveraging foundational models integrated with Retrieval-Augmented Generation (RAG) framework, the study introduces an approach to process diverse combustion research data, spanning experimental studies, simulations, and literature. The multifaceted nature of combustion research emphasizes the critical role of knowledge processing in navigating and extracting valuable information from a vast and diverse pool of sources. The developed approach minimizes computational and economic expenses while optimizing data privacy and accuracy. It incorporates prompt engineering and offline open-source LLMs, offering user autonomy in selecting base models. The study provides a thorough examination of text segmentation strategies, conducts comparative studies between LLMs, and explores various optimized prompts to demonstrate the effectiveness of the framework. By incorporating an external database, the framework outperforms a conventional LLM in generating accurate responses and constructing robust arguments. Additionally, the study delves into the investigation of optimized prompt templates for the purpose of efficient extraction of scientific literature. The research addresses concerns related to hallucinations and false research articles by introducing a custom workflow developed with a detection algorithm to filter out inaccuracies. Despite identified areas for improvement, the framework consistently delivers accurate domain-specific responses with minimal human oversight. The prompt-agnostic approach introduced holds promise for future deliberations. The study underscores the significance of integrating LLMs and knowledge processing techniques in scientific research, providing a foundation for advancements in data assimilation and utilization.