Abstract:News Articles provides crucial information about various events happening in the society but they unfortunately come with different kind of biases. These biases can significantly distort public opinion and trust in the media, making it essential to develop techniques to detect and address them. Previous works have majorly worked towards identifying biases in particular domains e.g., Political, gender biases. However, more comprehensive studies are needed to detect biases across diverse domains. Large language models (LLMs) offer a powerful way to analyze and understand natural language, making them ideal for constructing datasets and detecting these biases. In this work, we have explored various biases present in the news articles, built a dataset using LLMs and present results obtained using multiple detection techniques. Our approach highlights the importance of broad-spectrum bias detection and offers new insights for improving the integrity of news articles.
Abstract:Negation Scope Resolution is an extensively researched problem, which is used to locate the words affected by a negation cue in a sentence. Recent works have shown that simply finetuning transformer-based architectures yield state-of-the-art results on this task. In this work, we look at Negation Scope Resolution as a Cloze-Style task, with the sentence as the Context and the cue words as the Query. We also introduce a novel Cloze-Style Attention mechanism called Orthogonal Attention, which is inspired by Self Attention. First, we propose a framework for developing Orthogonal Attention variants, and then propose 4 Orthogonal Attention variants: OA-C, OA-CA, OA-EM, and OA-EMB. Using these Orthogonal Attention layers on top of an XLNet backbone, we outperform the finetuned XLNet state-of-the-art for Negation Scope Resolution, achieving the best results to date on all 4 datasets we experiment with: BioScope Abstracts, BioScope Full Papers, SFU Review Corpus and the *sem 2012 Dataset (Sherlock).
Abstract:Agricultural research has been profited by technical advances such as automation, data mining. Today, data mining is used in a vast areas and many off-the-shelf data mining system products and domain specific data mining application soft wares are available, but data mining in agricultural soil datasets is a relatively a young research field. The large amounts of data that are nowadays virtually harvested along with the crops have to be analyzed and should be used to their full extent. This research aims at analysis of soil dataset using data mining techniques. It focuses on classification of soil using various algorithms available. Another important purpose is to predict untested attributes using regression technique, and implementation of automated soil sample classification.