Abstract:The integration of Large Language Models (LLMs) into the public health policy sector offers a transformative approach to navigating the vast repositories of regulatory guidance maintained by agencies such as the Centers for Disease Control and Prevention (CDC). However, the propensity for LLMs to generate hallucinations, defined as plausible but factually incorrect assertions, presents a critical barrier to the adoption of these technologies in high-stakes environments where information integrity is non-negotiable. This empirical evaluation explores the effectiveness of Retrieval-Augmented Generation (RAG) architectures in mitigating these risks by grounding generative outputs in authoritative document context. Specifically, this study compares a baseline Vanilla LLM against Basic RAG and Advanced RAG pipelines utilizing cross-encoder re-ranking. The experimental framework employs a Mistral-7B-Instruct-v0.2 model and an all-MiniLM-L6-v2 embedding model to process a corpus of official CDC policy analytical frameworks and guidance documents. The analysis measures the impact of two distinct chunking strategies, recursive character-based and token-based semantic splitting, on system accuracy, measured through faithfulness and relevance scores across a curated set of complex policy scenarios. Quantitative findings indicate that while Basic RAG architectures provide a substantial improvement in faithfulness (0.621) over Vanilla baselines (0.347), the Advanced RAG configuration achieves a superior faithfulness average of 0.797. These results demonstrate that two-stage retrieval mechanisms are essential for achieving the precision required for domain-specific policy question answering, though structural constraints in document segmentation remain a significant bottleneck for multi-step reasoning tasks.
Abstract:The Model Context Protocol (MCP) has emerged as the de facto standard for connecting Large Language Models (LLMs) to external data and tools, effectively functioning as the "USB-C for Agentic AI." While this decoupling of context and execution solves critical interoperability challenges, it introduces a profound new threat landscape where the boundary between epistemic errors (hallucinations) and security breaches (unauthorized actions) dissolves. This Systematization of Knowledge (SoK) aims to provide a comprehensive taxonomy of risks in the MCP ecosystem, distinguishing between adversarial security threats (e.g., indirect prompt injection, tool poisoning) and epistemic safety hazards (e.g., alignment failures in distributed tool delegation). We analyze the structural vulnerabilities of MCP primitives, specifically Resources, Prompts, and Tools, and demonstrate how "context" can be weaponized to trigger unauthorized operations in multi-agent environments. Furthermore, we survey state-of-the-art defenses, ranging from cryptographic provenance (ETDI) to runtime intent verification, and conclude with a roadmap for securing the transition from conversational chatbots to autonomous agentic operating systems.
Abstract:This paper investigates the resilience of a ResNet-50 image classification model under two prominent security threats: Fast Gradient Sign Method (FGSM) adversarial attacks and malicious payload injection. Initially, the model attains a 53.33% accuracy on clean images. When subjected to FGSM perturbations, its overall accuracy remains unchanged; however, the model's confidence in incorrect predictions notably increases. Concurrently, a payload injection scheme is successfully executed in 93.33% of the tested samples, revealing how stealthy attacks can manipulate model predictions without degrading visual quality. These findings underscore the vulnerability of even high-performing neural networks and highlight the urgency of developing more robust defense mechanisms for security-critical applications.